/* C code to tridiagonalize a Matrix using Householder's Method and then finding the eigen values using Jacobi Rotation Method*/
#include<stdio.h>
#include<math.h>
#define ERROR 0.0000001
//Function to read input matrix
void read_matrix(int order ,float matrix[][order])
{
int i, j;
for (i=0; i<order;i++)
for (j=0;j<order;j++)
scanf("%f",&matrix[i][j]);
}
//Function to print the matrix
void print_matrix(int order , float matrix[][order])
{
int i, j;
for (i=0; i<order;i++)
{
for (j=0;j<order;j++)
printf("%.4f\t",matrix[i][j]);
printf("\n");
}
}
int check_symmetric(int n , float a[][n])
{
int i, j, tag=1;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if (a[i][j]!=a[j][i])
{
tag=0;
break;
}
}
if (tag==0)
break;
}
return tag;
}
//Function to multiply two matrices "a" and "b" and put the result in matrix "c"
float multiply(int n , float a[][n], float b[][n] , float c[][n] )
{
int i,j,k ;
float sum;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
sum=0;
for(k=0;k<n;k++)
sum=sum+(a[i][k])*(b[k][j]);
c[i][j]=sum;
}
}
/*Function to get an identity matrix*/
void identity(int n , float S[][n])
{
int i , j;
for (i=0; i<n;i++)
for (j=0;j<n;j++)
{
if (i==j)
S[i][i]=1;
else
S[i][j]=0;
}
}
/*Function to copy one matrix into another matrix*/
void copy(int n, float a[][n] , float b[][n])
{
int i , j;
for (i=0;i<n;i++)
for(j=0;j<n;j++)
a[i][j]=b[i][j];
}
void transpose_vector(int n, float vector[] , float matrix[][n])
{
int i,j;
float sum=0;
for(i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
matrix[i][j] = vector[i]*vector[j];
}
}
}
void print_vector(int n, float a[])
{
int i;
for (i=0;i<n;i++)
{
printf("%12.4f ",a[i]);
}
printf("\n");
}
void swap(float a[], int i, int j)
{
float temp;
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
void bubblesort( int n, float a[])
{
int i , j;
for(j=n-2;j>=1;j--)
for(i=0;i<=j;i++)
if(a[i]>a[i+1])
swap(a,i,i+1);
}
void jacobi_rotation(int n , float a[][n])
{
int i,j;
float pi = 3.1415926;
float S[n][n] , invS[n][n] ,temp1[n][n] ,temp2[n][n], theta;
identity(n,S);
identity(n,invS);
int u,v,tag=1;
while(1)
{
tag=1;
for (i=0;i<n;i++)
{
for (j=i+1 ; j <n;j++)
{
if ((a[i][j])!=0)
{
if (a[i][i]!=a[j][j])
theta = (atan(2*a[i][j]/(a[i][i]-a[j][j])))/2;
else
{
if (a[i][j]>0)
theta = pi/4;
else if (a[i][j]<0)
theta = -pi/4;
}
identity(n,S);
identity(n,invS);
S[i][i]= invS[i][i]= invS[j][j]=S[j][j]=cos(theta);
S[i][j]= invS[j][i]= -sin(theta);
S[j][i]= invS[i][j]= sin(theta);
multiply(n,invS,a,temp1);
multiply(n,temp1,S,temp2);
copy(n,a,temp2);
}
else continue;
}
}
for (u=0;u<n;u++)
{
for (v=u+1;v<n;v++)
{
if (abs(a[u][v]) > ERROR)
{
tag=0;
break;
}
}
if (tag==0)
break;
}
if (tag==1)
break;
}
}
/*main function*/
int main()
{
int n,i,j,sign,k;
scanf("%d",&n);
float a[n][n] , P[n][n] ,temp1[n][n] ,temp2[n][n] , I[n][n] , w[n], transpose[n][n], x , sum,s,temp;
read_matrix(n,a);
int check;
check = check_symmetric(n,a);
if (check==0)
{
printf("Given matrix is not symmetric\n");
return 0;
}
for(i=0;i<n-2;i++)
{
j=0;
sum=0;
while(j<=i)
{
w[j++]=0;
}
for(k=i+1;k<n;k++)
sum=sum+a[i][k]*a[i][k];
s= sqrt(sum);
if (s==0)
continue;
//printf("s : %f\n",s);
if (j==i+1)
{
if (a[i][j]<0)
sign=-1;
else
sign=1;
temp = (1+a[i][j]*sign/s)/2;
x=sqrt(temp);
w[j]=x;
j++;
}
for (j=i+2;j<n;j++)
{
w[j]=(a[i][j]*sign)/(2*s*x);
}
identity(n, I);
transpose_vector(n,w,transpose);
for(k=0;k<n;k++)
{
for(j=0;j<n;j++)
{
P[k][j]=I[k][j]-2*transpose[k][j];
}
}
//print_matrix(n, P);
multiply(n,a,P,temp1);
multiply(n,P,temp1,temp2);
copy(n,a,temp2);
//print_matrix(n, a);
}
//printf("\nTridiagonal matrix using Householder Method is : \n\n");
//printf("\n");
print_matrix(n,a);
//printf("\nEigne values of Tridiagonal : \n\n");
jacobi_rotation(n, a);
float eigen[n];
for (i=0;i<n;i++)
eigen[i]=a[i][i];
bubblesort(n,eigen);
//printf("\n");
for (i=n-1;i>=0;i--)
printf("%.4f\n",eigen[i]);
return 0;
}
#include<stdio.h>
#include<math.h>
#define ERROR 0.0000001
//Function to read input matrix
void read_matrix(int order ,float matrix[][order])
{
int i, j;
for (i=0; i<order;i++)
for (j=0;j<order;j++)
scanf("%f",&matrix[i][j]);
}
//Function to print the matrix
void print_matrix(int order , float matrix[][order])
{
int i, j;
for (i=0; i<order;i++)
{
for (j=0;j<order;j++)
printf("%.4f\t",matrix[i][j]);
printf("\n");
}
}
int check_symmetric(int n , float a[][n])
{
int i, j, tag=1;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if (a[i][j]!=a[j][i])
{
tag=0;
break;
}
}
if (tag==0)
break;
}
return tag;
}
//Function to multiply two matrices "a" and "b" and put the result in matrix "c"
float multiply(int n , float a[][n], float b[][n] , float c[][n] )
{
int i,j,k ;
float sum;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
sum=0;
for(k=0;k<n;k++)
sum=sum+(a[i][k])*(b[k][j]);
c[i][j]=sum;
}
}
/*Function to get an identity matrix*/
void identity(int n , float S[][n])
{
int i , j;
for (i=0; i<n;i++)
for (j=0;j<n;j++)
{
if (i==j)
S[i][i]=1;
else
S[i][j]=0;
}
}
/*Function to copy one matrix into another matrix*/
void copy(int n, float a[][n] , float b[][n])
{
int i , j;
for (i=0;i<n;i++)
for(j=0;j<n;j++)
a[i][j]=b[i][j];
}
void transpose_vector(int n, float vector[] , float matrix[][n])
{
int i,j;
float sum=0;
for(i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
matrix[i][j] = vector[i]*vector[j];
}
}
}
void print_vector(int n, float a[])
{
int i;
for (i=0;i<n;i++)
{
printf("%12.4f ",a[i]);
}
printf("\n");
}
void swap(float a[], int i, int j)
{
float temp;
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
void bubblesort( int n, float a[])
{
int i , j;
for(j=n-2;j>=1;j--)
for(i=0;i<=j;i++)
if(a[i]>a[i+1])
swap(a,i,i+1);
}
void jacobi_rotation(int n , float a[][n])
{
int i,j;
float pi = 3.1415926;
float S[n][n] , invS[n][n] ,temp1[n][n] ,temp2[n][n], theta;
identity(n,S);
identity(n,invS);
int u,v,tag=1;
while(1)
{
tag=1;
for (i=0;i<n;i++)
{
for (j=i+1 ; j <n;j++)
{
if ((a[i][j])!=0)
{
if (a[i][i]!=a[j][j])
theta = (atan(2*a[i][j]/(a[i][i]-a[j][j])))/2;
else
{
if (a[i][j]>0)
theta = pi/4;
else if (a[i][j]<0)
theta = -pi/4;
}
identity(n,S);
identity(n,invS);
S[i][i]= invS[i][i]= invS[j][j]=S[j][j]=cos(theta);
S[i][j]= invS[j][i]= -sin(theta);
S[j][i]= invS[i][j]= sin(theta);
multiply(n,invS,a,temp1);
multiply(n,temp1,S,temp2);
copy(n,a,temp2);
}
else continue;
}
}
for (u=0;u<n;u++)
{
for (v=u+1;v<n;v++)
{
if (abs(a[u][v]) > ERROR)
{
tag=0;
break;
}
}
if (tag==0)
break;
}
if (tag==1)
break;
}
}
/*main function*/
int main()
{
int n,i,j,sign,k;
scanf("%d",&n);
float a[n][n] , P[n][n] ,temp1[n][n] ,temp2[n][n] , I[n][n] , w[n], transpose[n][n], x , sum,s,temp;
read_matrix(n,a);
int check;
check = check_symmetric(n,a);
if (check==0)
{
printf("Given matrix is not symmetric\n");
return 0;
}
for(i=0;i<n-2;i++)
{
j=0;
sum=0;
while(j<=i)
{
w[j++]=0;
}
for(k=i+1;k<n;k++)
sum=sum+a[i][k]*a[i][k];
s= sqrt(sum);
if (s==0)
continue;
//printf("s : %f\n",s);
if (j==i+1)
{
if (a[i][j]<0)
sign=-1;
else
sign=1;
temp = (1+a[i][j]*sign/s)/2;
x=sqrt(temp);
w[j]=x;
j++;
}
for (j=i+2;j<n;j++)
{
w[j]=(a[i][j]*sign)/(2*s*x);
}
identity(n, I);
transpose_vector(n,w,transpose);
for(k=0;k<n;k++)
{
for(j=0;j<n;j++)
{
P[k][j]=I[k][j]-2*transpose[k][j];
}
}
//print_matrix(n, P);
multiply(n,a,P,temp1);
multiply(n,P,temp1,temp2);
copy(n,a,temp2);
//print_matrix(n, a);
}
//printf("\nTridiagonal matrix using Householder Method is : \n\n");
//printf("\n");
print_matrix(n,a);
//printf("\nEigne values of Tridiagonal : \n\n");
jacobi_rotation(n, a);
float eigen[n];
for (i=0;i<n;i++)
eigen[i]=a[i][i];
bubblesort(n,eigen);
//printf("\n");
for (i=n-1;i>=0;i--)
printf("%.4f\n",eigen[i]);
return 0;
}
No comments:
Post a Comment